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Abstract. The vector wave equation for an lectromagnetic field

outside a perfectly conducting sphere situated in an inhomogeneous

anisotropic medium is reduced, by means of a dyadic Stratton-Chu

formula, to an equivalent vector integral equation. The anisotropy is

presumed to arise from a magnetic dipole at the center of the sphere,

so khat the kernel of the integral equation consists of the inner

product of the appropriate conductivity tensor and the Green's dyadic

(in a form due to C. T. Tai) for a sphere in free space. A discussion

is given of the spherical vector wave functions involved, and various

transformations are applied to render the vector integral equation more

tractable. Finally the vector system is reduced to a single scalar

integral equation apparently more suited to numerical solution through

proper redefinition of the domain of integration.

1. Introduction. The vector wave equation of interest has the form

curl curl E = k 2 K. E (1)
- 0 -

where E is the unknown field, k the free space wave number, and
0

14 a dyadic, or second order tensor, that expresses the anisotropy of

the medium. Such a differential equation arises naturally in several
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contexts [1), but in the present instance interest is centered on the

electromagnetic field. Eq. (1) comes about from Maxwell's equations

in the following way. Maxwell's equations, in a form appropriate to

an inhomogeneous anisotropic medium, read

8H 8E Deff
curE = curlo=J e- (2)

divD eff = 0 divB=0 (3)

where J is related to E by the conductivity tensor v:

J = a.• , (4)

and-the (effective) electric induction D eff is given by

D eff = to .E (5)

The effective dielectric tensor K is related to the conductivity

tensor by the equation

OK = I + / (i ) (6)

Assuming harmonic time dependence eiwt substitution of the second

of eqs. (2) into the first then leads to the vector wave equation (1)

upon taking account of (5).

If one expands the left hand side of (1) by the usual vector

identity, a term in grad div E results. In an inhomogeneous anisotropic

,nedium this term inextricably couples the field components. Thus not

only the vectorial nature of the boundary conditions but also the
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Since, for an arbitrary vector F and dyadic G, both in C2,

V. (F X VXG) = V X F . V X - F V X Vx

and

V ((D X V X F X F - V X G V X V X F 0
v- (, x~xV) =VXQ.-x -VXVXF-

where 0 denotes the transpose of I, the difference of the volume

integrals

J'V (F X V X G)dV and J'v X V X F)dV
V V

yields, in view of Gauss' theorem, the following vector Green's formula:

(Z-.vxv -aT .VXVXF)dV n X V X F -F X'V X )dE (7)

The terms in the surface integral may be expanded as follows:

n .OX V X F = V X F • n XC and n • FXVXG=nX F • V XG

and we finally obtain from (7) the desired generalization of the Stratton-Chu

formula:

[F F. V XV X V XV X F 0 )dV = V X V X,- • v X dV
V 0 ]d

[V X F - n XG - n X F • V X jdE . (8)

The order of the inner products in these integrands is essential.

Let us now apply formula (8) to the vector wave equation

V X V X E = k2 ,.E + J(r) , (9)
4- 0 -



where J(r) represents the current distribution of a finite source that may

be present,theconduction current in the anisotropic conducting medium

having already been included in K • E . We thus take F = E and

Q to be the dyadic Green's function for a homogeneous isotropic medium:

V X VC= k 2 + I6(P-Q), (10)
0

but satisfying the same boundary and for radiation conditions as E

Thus at the surface of the perfectly conducting sphere,

A X E = 0 and nlX =0 (11)

Substitution of (9), (10), and (11) into (8) and taking account of

Silver-Muller type radiation conditions for E and 0 then leads to

the following equivalent integral equations for the electric field at

point P in an inhomogeneous anisotropic medium exterior to a perfectly

conducting sphere:

E (P) F (P) + k2  (Q). (Q) (Pq)dQ (12)
Va

or

E (P) - £ (P) + k2  T(PQ) .(Q) • £(q)dQ (1)

where

F =Q) - J O(P,Q)dQ for eq. (12) (14)

ST(P. J(Q)dq for eq. (13)

Va  denotes that portion of 3-space exterior to the sphere of radius

a, and

Nfl=Y K- I =ci/(iWo). (15)
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It is appropriate here to consider the forms that N (which,

apart from multiplication constants, is essentially the conductivity

tensor) can take in various magnetoplasmas. Each form is obtainable

from the pondemotive equation for a magneto-ionic medium:

av
mf_-q E+ vx (Bo +b)3-vmv, (16)

where q and m denote the charge and mass, respectively, of a charged

particle moving with velocity v in a medium with ambient magnetic

field B and average collision frequency v. The form of conductivity

tensor is then determined in the usual way by assuming harmonic time

dependence, expressing the vector product in (16) in the appropriate

-1coordinate system, and introducing the polarization vector P(r) = (ia) J(r)

and the notation of magneto-ionic theory [4]. For a uniform magnetic field

parallel to the z-axis we have the familiar result

/1 U ii 0

IN= . il U 0uniform (17)

o 0 uz 2 y)/U .

For a magnetic vector B lying entirely in the meridian plane in spherical.~0

coordinates the. tensor M takes the form

x -_y2 "_y y iY0

a6ph 2 _Y Y _y2 -iY (18)

iY9 U iYr U
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where Yr = - eBor /(mw) = 2Y cos@ / V Y+ 3 co

Yg = - eBog/ (mw) = Y sing/ 4 3 -(;os2

Y = W / w = 5.456 x 106 + /fjr/)3

For dipolar coordinates [5] 0 = cos 9/r, = r / sin2, = M

with the ambient magnetic field being directed along a line of force

a = const.(i.e., parallel to 1), Iff takes essentially the same

form as (17):

X (1 y2 ) /
IV, 2 2 (12 1dipolar U _ Y 0 U -ii (19)

0 IY U

where Y =w H / W

We note that in all. the fdrms (17) - (19) the conductivity tensor

consists of a factor X = w 2 / W2 involving the electron density,

multiplying a matrix which expresses only the effects of the ambient

magnetic field and the collision frequency. Thus

X= x (P)l , (20)

where the form of V is immediately clear from the appropriate one of

expressions (17) -(19).
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3. The Green's Dyadic

A. Tai's Form of the Green's Dyadic

The Green's dyadic that appears in the integral equations

(12) or (13) applies to the exterior problem for a perfectly conducting

sphere situated in homogeneous isotropic space. The spectrum of the

linear operator in (10) is therefore in general continuous, since the

volume exterior to the sphere is infinite. To determine G one can

either employ an integral representation over a contour that guarantees

outgoing waves at infinity or else adopt a series expansion in terms of

vector spherical wave functions, each term of which consists of a

generalized spherical harmonic in the "angular coordinates" Q and ,

multiplied by a discontinuous function of the radial coordinate. Since

V in the latter form is already available from the investigations of

C. T. Tai [2), it will be adopted here. The transpose of Tai's Green's

dyadic (this being the form appropriate to (13)), properly modified for

+iwt
e time dependence, reads as follows:

(4) (4)

,r ( p ) eeI) + r (p) .e (Q), r p < r (1a)
0omn n 0 mn on.

T CD (n-rn)!
(PQ)= n M7 ~n+m).

n=l m=o (4) (4)

e p ) Mr (q) + H (P) N(Q) , r > r (21b)
ms ms en mn

0 0 0 0

where Cm is the Neumann symbol (1 for m =0, 2 otherwise),

cn A-ik0 2n +'l (22)Cn o n - '
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and e and Hemn are defined in terms of the spherical vector wave~emn ~ om
0 (1,4) r(1,4)

functions Mr and Ne as follows:
mn 0 mn

P) = Mr +Rb (23)!eml emn) Rn -r e(P)

S  0 0mn

(1) 4e (P) (24)H Nr= (P + SrP
!(P) e* p~j no (24m emn mn
oi o o

The spherical vector wave functions themselves will be discussed in the

next section. The reflection coefficients Rb and Re are defined
n n

as follows:

b jn(koa) Re= . ka jn(k a)]'

n h (2)(k a) n kOa b(2) (koa)],
n o n 0

In the sequel we shall often simply write r for the radial coordinate

r. of P and r' intead of rQ.

We note that OF (P,Q) =G>(Q,P), d> (P,Q) = Q< (Q,P), simply

interchanging antecedents and consequents in the dyadics.

B. Vector Spherical Wave Functions.

The scalar spherical wave functions have the form C2J,E3,sec.7.11]

(r'Q) z (kor) en (cos Q) (sin (25)
mn

0

ot
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where zn  denotes a spherical Bessel function and Q is the angular

variable (C,). We note that

V2e + k = 0
e o e
mn mn

r r

The spherical vector wave functions Lr  M
r  Nr  (the superscript

e -e -e
mn mn mn

o0 0

r may on occasion be omitted) are then defined in terms of te as
n

0

follows:

dz (k r) dPm

P= pm (cos 0)[cos3m t I + r-lz (kor) n (cJ 1 +
~e =  eM dr n tsinm _rl n o re in j m  -i

msn m
o o

(26)

m zn (k r)Pn(cos sinrsin 9 n o)nCos~m(

H r =V X( r) =L Xr =
-e e -

..0 0 0

__ r(sinj, dl@ zkrM nCos

-+ Zn(kor) (cos z (kr) n[OB 3 1 (27)sin Q s  o d si

(n  k-V X (e r)= n(n + ) r (coo cos 1 +
e v x e +) k0r n sin r

0 0

1 (28)
[kr z n(kor)] ,dpm  (28)

+ k r dQ sin '
0

@ Ck 0r z n ( k or ) ] pm (Co. g)[sin I Csi W - nCsn 1
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K and N have a reciprocal relation to each other:
-e mn mn

0 0

Mr  k"I V X Nr Nr k-I V X Mr
He 0 -e -e o _e
mn mn mn mn0 0 0 0

Then we may.write (21) as

X q ) VX () +Rb4++
P e QRe nQ+$(Q~J

mn mn mn
o 0

+ V2 X (0)V r)X V7XR (Q)+ ifC( 'g r' <r
TD n 0 ( - mn mn mnT (- n-m,. 0 0 0

o (Pq) c c nm).M=1
n~ ~~V u~0 i X R~P b4~

R (P))rV J X(e (Q)') +

mn mn mn0 0 0

r' > r

This form of 0 T(P,Q) is helpful in expanding the dyadic into components.

The expansion

PnCos T) C (n - m)' c ,p - (29)
m (n + im 008 O) P(cos Q) *(WP -Q)

will play an important role in what follows. It will, however, be more

convenient for our purposes to rewrite (29) in terms of the even and odd

spherical harmonics

Y ( (Cos Q) (cos m CP) (30)

i n n sin m c
0
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Thus

*e(P) = Zn(kr Ye (o), (31)
mn mn

0 0

which leads to an even and odd resolution of (29):

P (cos y) = P (cos Y) + P (cos Y)
n e n -m o,n

E C(n-m)'y (O)y e,mn(0') + y o,mn()y o,mn(O') (32)= 7:C rn+. en

m=o

The spherical vector wave functions, (30) and (31), become

L Zn (kor) bymn zn(kor) 5Yeme
n~m i@ n o (3)

L (P) =Y (0)Ir  + r - k 1)11 ( 3
e e n  r emn ~r + 0 69 - 9 r rin -CP
0 0

Y e
e nmn

M (P) z (k r) OM 0- (34)e 0n sin1 4)
0

N (P) =kr + 2k- V# + k-l(r • V) Vte (35)
n emn r 0 mn 0 mn

0 0 0 0

-' emn 1 e
(k r)- ln(n+l)z(kor)Y (0)1r+ [kor z(kor)] + ;-n - 1 -- n

mn
0

We are now in a position to expand the dyadic products in CT(P,Q).

Thus e eYgmn omn
M (P)Me (Q) =z n(kor)Zn(kor')(1 9 7 i@, -

mn mn sin 9 sin'
0 0

8y ay ay ay- 1 mn-- - n n 8mn

- sag cp sin ' dQ l O

ay ay

+ 8nhn Smn (36)
-a9--
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and, defining

no' = kzkr) (kor') = CkorIZ Nor), (7

N (P) N* (Q) =(k 2rr')-l(1 rEn(n + 1)] 2zn(kro)Z n(k 0r')Y e (Q)Ye (O)i)r
,on -en an an

0 00 0

en

+ n(n + 1)z (k r)#.(k o)[1 Y. (0) 0 lot +
n o n Zr ean

0

e

.r sin 0' e

00

an

+6 n(n + 1)& (k r)Z (k r')[ 0-- 10 +

ay
e

+ ; i - ' a m m r

ay o
e ean m

e em! mnan a

eo 0 0
mn an

(38)

4
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The summations on m in (21) can then be expressed as

a2P(cos r)
emn

E" n Me(P) M(Q) Z(kor)Zn(kor')[1 70 s '
m=o % nm5 em - mn no-0sn9in1-1

0 0

(39)2p 2p
en en B2p
0 0 e

- ,ag + 1 -1n_
0 sn 9-V tpsin 9 - 1QW

and

E Cm  Ne(P) Ne)= (k rr')-1~ 1[n(n+l)f z (k r) Z (kor')Pe(Cos Y)Ir +
m=o n 0n .r n )n o e r

8 C

o~ 0m om on

e •

n +

+ (n+l)zn o r)f or '  0 1-v + 1 0----
n a r 59 sin - ,

6P a P

e e

1 n 1 n
CD.QI -9s oin sin Of W1 -0

(40
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We can thus write (21) as a dyadic wherein the summation on m no longer

appears explicitly:

n(PQ) = E C 1rc) + Rehr< nAcor. -A(n lM ° (cos +, +
in=l ~ n r

02 0
e 

e

a1 sn (r<,r> o2 (rlr>) WJr, - o

2 2pe e

S0 on 1 n(r<,r>

-~ i 9%-r %(r<,r> sin 9' O

2 -- en01 1 0-1 r-n Qqlr(r<'r>).+ - sin 0 Q, l,+ (Zla)

e nn
+ -(P_ na~r nr .-° , 1 , ),

ar2nP e n a 2- PO e n ' ~

+ 1 nQ(rl 0(kor+ 0 )1 sin)+ (41a)

p ee n
e on

,,or>  r + R %r<Bh o

n~ ~ ~~~.9 o Pn nrr Q ga7 4 sin 0'.t>

+ n(n+1) (kr~z>) 
r1>r

0P ;5P
()P en n h

e 0
e 0 n

h k r tV4r ) + R 0 s r + 0 1 V, )no> 9no < n n o~ <~ ' Sr Wein

V7 n> ;-nQ C

+F/Sr> Jnr<) + Reh Oc r (L) 0 1r + 1 0

(< I

(41b)
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where

(r< [Jn (kor<) + ARbh (k r)Jh nCkor>) (42)
Ren n4 n or n)(

Q2 (r<, r>) = (k2rr>)-l P(l)(k r<) + Re I 0 <)Jn k °(k r (43)

4. Transformations of the Vector Integral Equation

A. Reduction to Symmetric Form

It will now be assumed that the function X(P) (i.e., the

plasma frequency) exhibits radial symmetry, and further that X(r) vanishes

for r > r Then the integral equation (13) takes the form

E(P) - F(P) + k2 f dr' X (r') (P,Q) * 71(Q) * E(Q)dn' +

a ,

r (44)o 2 p,

dr'r' X (r') * (Q)- .(Q)df,

r

Evaluation of F(P) according to (14) for a horizontal (i.e.,

parallel to l) current element of moment p at the point (b,Qlcp)

above the sphere:

J (r,a) = iWp 6(r - b)6(Q - 0_)6(p - cr1)

r2sin '
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yields, for horizontal polarization,

( )br(4 (4)
[M e (bG 11~l) + R M (b$Qljq1XI; Mra (p +

0mn urn omno 0 0

(1) (4) (4)
+ (b,0l, l) + ReNr (b, O ,P L) (P)

4mn - nen
.0 0 0

r>b

2S.pa n (n-m), (45)
F (P)=-- E c Z em )

- o n=l m=o
Ae() ( bbr (PJ +

0 o* o

o0 0n

(4) (1) Re Nr (4 p)]

+ N-r-e(b ,gp 1 )[Nr ( P) + R P,

0 0

r<b

For vertical polarization, a vertical current element at (b,lqIm)

Jv(rtO) = iwp b(r - b)b(Q - Ql)b(T - rp1)

2
r sin 0

leads in the same way to

(1) (4) (4)
[Nemn(bQl)'+ RN emn(b,Ql,pl)]Nr(P),r > b

ko o omn

Fv (P) -° T cn SM ( n + m)! (46)
O n=l nm=o (4) (i) (4)

Nre(bGlcDl)[N (P) + R . (P)] , r < b
o mn mn

0 0
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An attempt to expand E(P) in the usual way in a series of

spherical vector wave functions

0) q r,)
E(P) = E E [eC'](r)?P (P '() P) +i~ r (2]) (P +24)(rN(

( q=l p=o pq -ep epq (r)M (P) + (P) + pq C p
00p 0p 0p

is foredoomed to failure, since the iterated summation causes the expansion.

coefficients in each row of the infinite system of algebraic equations re-

sulting from the substitution of (47) into (44) to be different. Thus unless

some device (like a generalization of the Watson transformation)is available

that permits one to discardfor each q , all but the first two coefficients

it will not be possible to solve for the expansion coefficients in (47) in

the usual way.

It may be possible to carry out such an expansion in terms of the

spherical Bessel functions and the Legendre polynomials (32) in y . However,

even then it would be more convenient to have (44) in symmetric form to assure

the applicability of the usual theorems on eigenvalues, eigenfunctions and

developability for symmetric kernels [6],[7J. Thus we define the new (definite)

unknown function and source function

E(P) = Ifj(P) • E(P) and (P) = *'(P) F(P) (48 a,b)

and the symmetric kernel

k >(P,Q) = pN*(P) . T(p,Q) 1 (Q) (49)
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Then the integral equation (44) can be written in symmetric form as

r 
2

(P) - kf f dr'r X (r') .r (P,Q d +
-0 ra

(50)

r

+ f dr'r' 2 X (r') j IK>(P,Q) * t(Q) d WV' = ,(P)

r

We next must give a specific form for (49), which involves first of

all the determination of P . For this purpose we employ the method of

Matrix Lagrange polynomials [8] and restrict ourselves to the spherical

coordinate form of W (eq.(18) ) with U = 1 (i.e.,the collision frequency

v = 0 ). The first step is to solve the characteristic equation

I - All =0 for the 3 eigenvalues of the matrix N . The

characteristic equation is the cubic

A3 ~± 2 3i 1
1 2 l _Y2 1 Y2

or

(A + l) - Y2A2 (A + 1) = O,

whence it follows that one eigenvalue is

Al .(51)

The reduced quadratic (A + 1) - y2A2 = 0 then yields the other two

eigenvalues
A : k-(l Y)-l (52)
2,3
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Then [9,p.2321 J can be represented in terms of matrix Lagrange

polynomials j., 1' as
1'2' 3

?A + 4 C + A' (53)1 1 2 2 3 3'

where

X 12 X13 2 X 21 X23 3 X 31 X32

with

= 'A X , ,, Ai  A , ( i,k =1,?.,3)

Thus

X -YU + Y) -
12 21

"13 -- - Y) _X31

X 23 2y(l - )-l 23

and ( rG

_y y iy

PI r i-Yr iYr2i -iY 0 iYr Y
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r rQ

YrY Y + iY

3 2r 9 YY r

iY 9 -iYr Y

Then the matrix interpolation polynomials are, according to (54),

2
r r (19

0 0 0

2

trO tr #r (56)
2 3

where '= Y/Y' fo = YO/Y. (57)

Thus, according to (53),

£i

2 + 2
77*= i/ 1 +~ Y Y
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or ' ~ i~ r 0 ''.

+- (i8r'

where

1 t

, -7T + Y- (59)

For the sake of brevity we shall shorten the notation for the elements of

~f as follows:

12 q13

'12 n14 M5~

'S ; '4 16

.Then, according to (49), the elements of - (P,Q) are given by

T T T •
K'(P IQ) ql(P)EG are11(q) + g,'2 + a;, 1 q;] + T2(P)[%rjl + Tin2 + G4,'3] +

O T T W'
+ ?13 (l)[ Edrll + G 'q2 + a 11 3 J

K.12 (PQ) = 1(p)[Gdr,1 2 (Q) + G 0'1 4 + G;T1 1 ;) + 12 p) r'12 + +e~ +

(rT 1 ,T aT+ I (p)[T I, + G ,T + G oT
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T T TT
+ GT1 3 +PGr 11 + (P[oi +;I

K2 1 p+Q q (P)[GrGTiQ q + G T + G T I

K22 (P,Q) = 12(P)CGT~~2 Q T T G,,; +Gu 5

rr q'(Q)+ G;02)G~ + a 3 + + GO1G;rll+Ggq

T T
+ q5 (P)Gr p113 + Gp' 1 M+ G q 3 1 (61

K (PQ) q ;(P)[GT q 1(Q) + Gder G T, +q 1 ;)[T T + GI1; 

(P(T T GT I

K (qQ q(P[GTeq(Q +G +i )GT Tj T T1 .

3 (,) 2 1;Prr,12 Q 3 g115+ GcI1q6] + q;(P)EGorII + Gi,114 + GGO 116J +

T T GT
+ 11 (P)[G r "13 + Gooq 51 + G cM 1 1

K31(Q ~;(P)[qG(Q) + 115+ .e. 1II1IP+[I r, i, + G;, q a~,16

+ 11(P)[Gcp T + G~,1 e GT 1
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The complexity of the elements (61) casts doubt upon the

appropriateness of an attempt to determine the expansion coefficients

in the usual way. However, a numerical approach appears possible, and

we now direct our attention towards a form of (50) more suited for

numerical solution.

B. Reduction to a Single Scalar Integral Equation

In the case of one independent variable a well-defined method

exists for reducing a system of integral equations to a single scalar

integral equation [7, sec.17], [9,p.1). The range of integration must

be finite, and the vector integral equation is reduced to scalar form by

simply redefining the kernel and other functions involved over an extended

range of integration. It is possible to apply a similar method to (50),

and we now proceed to its derivation.

Let the independent variables P and Q in (50) be respectively

P = (rp,)') , (62)

and define new independent variables

P1 = (P,0), Q' = (p',0 ') (63)

over the spherical shell-like regions characterized by the following

inequalities:

r + (j -l)(r0 - a) < p < a + j(r- a)

(J,k = 1,2,3) (64)

r' + (k - l)(r - a) < p' < a + k(r - a)
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Now the vector equation (50), when written in the form of a system,

is equivalent to the following:

3 r ro,
2') Srr 2 X(r' )f K OP, Ek (Q)dGO + fdr'X(r')SK (40Q = c'
'k=l a ni r (10,

.. (p) (j = 1,2,3) (65)

If we now define the new functions

C(P') (P) -(P = (P) (66)

and the new kernel

Kjk (PQ) r > r'

(P',Q) = X(r')Kjk(P,4) = X(r') r (67)
Kj (PQ), r < r'

then (65) can be written as the single scalar equation

3ro-2a

C(p,o) - k 2 f .r 0-a (p,p,; l,O,2),(p,O,)p ,, = 1 (,.). (68)
a

Although (68) is still entirely equivalent to (65) it appears to possess

certain advantages in that we have to do with a scalar rather than a vector

integral equation and that the "bookkeeping" for machine computation is

spelled out explicitly in (66) and (67).
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